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1. INTRODUCTION AND NOTATIONS

Let An (n > 1) denote an arbitrary but fixed partition of the unit interval
I = [0, 1], i.e., An: °= X o < Xl < ... < X n- l < X n = 1. By Sp(2, Ll n)
we denote the space of quadratic spline functions determined by the above
partition An. Namely, S E Sp(2, Lln} if and only if the following conditions
are satisfied:

(i) In each subinterval [Xi-I, Xi] (i = 1, 2, ... , n), s is an algebraic
polynomial of degree 2 or less;

(ii) S E 0(/).

It is a well known fact that Sp(2, An) is a linear subspace of C(/), and that
dim Sp(2, An) = n + 2. Let Ln2 denote a projection (linear, bounded and
idempotent map) with domain C(l) and range Sp(2, An)' If II . lie stands for
the sup-norm on the interval l, then the operator norm is given by a familiar
formula

II L n
2 11 = sup II Ln:f'llc

l!fI1c";;1
(fE C(l)). (Ll)

In this note, some examples of the operators L n2 are given, as well as
some results concerning their norms. The size of the norm L n

2 is important,
for

111- Ln2/11c ~ (1 + II Ln2 1D dist(f, Sp(2, An))

(for the most general form ofthis inequality, see, e.g., [5]).
Let {Ln2} denote some class of projections from C(l) onto Sp(2, An)'

Then Ln2 E {Ln2} is minimal if IILn2 II ~ II Ln2 11 for all Ln2. For som.e recent
results concerning minimal projections, see [9]. Bounds for the norm of
certain spline projections are given in [6-8] and [12].

In Section 2 we introduce the projections L n2 determined by the conditions
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(Ln2f)(Xi) = f(Xi) (i = 0, 1, ... , n) and (Ln2f),(xo) = 0. The norm of Ln2
and its upper bound fora minimal projection Ln2 are given in Theorems 2.1
and 2.2, respectively. The next section is devoted to the so-called quadratic
histospline projections (denoted by Pn2, Qn2, Rn2), determined by the
conditions

fi [(Pn2f)(X) - f(x)] dx = °
00,-1

(i = 1,2,... , n;fE C(l)), (1.2)

with appropriate boundary conditions for the spline Pn2J (Qn2J. Rn2f).
Upper bounds for the no'i'm of p n2 (Qn2: Rn2) are given. Splines satisfying
(1.2) were introduced in [2]. Schoenberg [14] called these splines histosplines.
For further results concerning histosplines see, e.g., [1, 3, 11, 13-16].

2. QUADRATIC SPLINE PROJECTIONS

For simplicity of further notations let hi = Xi - Xi-! (i = 1,2,... , n),
Yi = S(Xi), mi = S'(Xi) (i = 0, 1,..., n) where s E Sp(2, An)' If X E [Xi-I' Xi]
(i = 1,2,..., n), then the spline function s may be written in terms Yi and mi
in the following way

( ) _ + ( ) + mi - mi-l ( )2S X - Yi-l mi-l X - Xi-l 2h. X - Xi-l
•

(i = 1,2,... , n).

(2.1)

Now we assume that the real numbers Yi(i = 0, 1,... , n) and mo (= s'(xo))
are given. From conditions s E C(l) and with the help of (2.1), we obtain

(i = 1, 2,..., n). (2.2)

Solving this difference equation we have a simple formula for determining
first derivatives mi at knots, namely

i

mi = 2 L (_I)i+l d1 + (-I)i mo
1=1

Thus from (2.1) and (2.3) we have the following

(i = 1,... , n). (2.3)

LEMMA 2.1. For n > 1, arbitrary but fixed partition LIn' and/or arbitrary
real numbers Yi (i = 0, 1, ... , n)andmo, there exists exactly one spline/unction
s E Sp(2, LIn) satisfying the follOWing conditions S(Xi) = Yi (i = 0, 1,... , n)
and s'(xo) = mo.

In [9], the authors considered·an interpolating scheme as in Lemma 2.1
but with periodic boundary cO:Q.ditions.
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For our further use, we introduce the so-called fundamental spline func
tions Sj E Sp(2, Lln) (j = 0, 1,... , n) satisfying the conditions

(i,j = 0, 1,... , n). (2.4)

Also assume that for all j = 0, 1,... , n

(2.5)

From Lemma 2.1, it follows that Sj always exists for j = 0, 1,... , n. In the
next lemma an explicit formula for Si is given.

LEMMA 2.2. For an arbitrary partition Ll n , the fundamental spline func
tions Si (j = 0, 1,... , n) are given by the formula

six) = 0,

= ( X -h~i-1 r,
J

2 (X - Xi)2
= 1 +~ (Xm - x)(x - Xi) - h '

J J+1 1+1

_ ( 1)1+1 mi+1 ( )( )- - -h-- X - XHI XHHI - X ,
i+l+1

Xi-1 ~ x ~ Xj ,

(2.6)
Xi ~ X ~ Xj+!,

where mJ+l = -2(Ijhi + Ijhm ) (j = 0, 1,... , n - 1; Ilho = 0).

Proof Let for the fixed value of the index j (j = 0, 1,... , n) mi == S;(Xi)'
First, the numbers mi will be calculated.

Case 1. j = 0. From (2.2) conditions (2.4) and (2.5) we have mo = 0,
ml = -2jh1 , ml = (_1)1+1 m1 (l = 2,3,... , n).

Case 2. j = n. In a manner similar to the above, we obtain m! = 0
for 1= 0, 1,... , n - 1 andmn = 2jhn .

Case 3. j = 1, 2, , n - 1. By virtue of (2.4), (2.5) and (2.2), we obtain
mi = °for i = 0, I, ,j - 1, and further mj = 2jhj , mi+1 = -2(I/hi +
Ijhi+1)' mi+! = (-1)1+1mi+1 (I ~ I;j + I ~ n). Then (2.6) is an obvious
consequence of the Hermite interpolation formula.

COROLLARY 2.1. Under the assumptions of Lemma 2.2, we have

sgn six) = 0, X o ~ x ~ Xi-1 ,

= 1,

= (-1)1,
~~<X<~+1' ~n

Xj+! < x < Xj+l+l (I ~ l;j + I ~ n -,- 1).
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Let f E C(I). We define the projection L n
2 in the following way

n

(Ln2f)(x) = I f(Xj) six),
j=O

(2.8)

where Sj E Sp(2, LIn). It is obvious by virtue of (2.4) and (2.5) that
(Ln 2j)(Xi) = f(Xi) (i = 0, 1, ... , n) and (Ln2f)'{xo) ~ O. If

n

An2(X) = I I six)I
j=O

(x E I)

denotes the so-called Lebesgue function connected with the projection Lri2,

then
(2.9)

Now we are able to prove the following

THEOREM 2.1. IfL n
2 is defined by (2.8), then

(2.10)

Proof Let x E [Xi-I, Xi] (i = 1,2,... , n). Then by virtue of (2.6) and (2.7)
we obtain

n i i-2

An2(X) = I ISj(X) I = L I sj(x)1 = I Isix)I + Si_I(X) + Si(X),
j=O j=O j=O

Hence

(x E [Xi-I, Xi])'

(2.11)

For simplicity of further notation, let Wi(X) ~ (Xi - X)(x - Xi-I)' From
Lemma 2.2 we have I SO(X) I = (2/hih1) wlx), i = 2, 3,..., n + 1, ISj(x)j =
2/hi (l/h j + l/hHI) Wi(X) (j = 1,2,... , i - 2); i?: j + 2. Bence (2.11) becomes

4 i-I 1
= 1 + h: I h: Wi(X),

t j=l J

Further maxxi_ 1
';;;x';;;x

i
A n 2(X) = 1 + hi L::~ l/hj(i = 1,2,... , n), and (2.9)

implies the formula (2.10). . I
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Let LIn and ..In be two different partitions of the unit interval I such that
the mesh sizes hi and hi (i = 1,2,... , n) fulfill the inequalities

o < hn ~ hn- l ~ ••• ~ h2 ~ hI < 1,

o < hI ~ 1i2 ~ '" ~ hn-1 ~ lin < 1,

(2.12)

(2.13)

n n "" i-l f'
where Li~l hi = Li=l hi = 1. Further let ei = hi Lid Ilhj , and ei = lli

i-I - .
Li=l Ilhj (l = 2,3,... , n).

It follows from the proof ofTheorem 2.1 that the Lebesgue function An2(X)
is strictly concave in each subinterval [Xi-I, Xi](i = 2,3, ... , n) and A,,2(X) =: 1
for x E [xo , Xl]. Thus the numbers 1 + ei and 1 + ei are local maxima of
the functions A n2(X) and An2(X), respectively. We can prove the following

COROLLARY 2.2. If the partitions LIn and ..In are such that (2.12) and
(2.13) hold, then ei ~ ei (i = 2, 3,... , n). Hence II L n

2 11 ~ II L n
2 11.

Proof From (2.12) and the definition of ei we obtain

Similarly (2.13) implies

(i - 1) lii/hi _ l ~ ei

(i = 2, 3,... , n).

(i = 2, 3,... , n).

(2.14)

(2.15)

From our assumptions, hi/hi-! ~.1 and hilhi-! ~ 1 (i = 2, 3,... , n). Hence
and from (2.14) and (2.15) one obtains

ei ~ (i - 1) ~ (i - 1) hilhi-l ~ ei. I

From Corollary 2.2 it follows that the minimal projection Ln2 is not con
tained in some subclass of projections (of the form (2.8)) determined by
the partitions like (2.13). Now we give an upper bound for the norm of the
minimal projection Ln2.

THEOREM 2.2. If Ln2 is a minimal projection among all projections of
the form (2.8), then for every n > 1, the following upper bound is valid

IILn
2 11 ~ 3 - 22

- n ~ 3.

Proof Let LIn be defined as follows, hi = 2-i (i = 1,2,... , n - 1)
and hn' = 2l - n (the condition L~~l hi = 1 is satisfied). We have

i = 1,2,...,n-l,

i = n.
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Hence by virtue of (2.10), II L n
2

11 ~ 3 - 22- n ~ 3 and further the definition
of a minimal projection gives the desired result. I

Meinardus and Taylor [9] proved that a minimal projection in the class
considered in their paper has a norm (n + 1)/2 (n-odd). From Theorem 2.2
it follows that a minimal projection in the class defined by (2.8) has a smaller
norm even for small values of n.

3. QUADRATIC HrSTOSPLINE PROJECTIONS

Now we introduce some additional notation. Let h = maX1<i<n hi ,
b = min1<i<n hi, Kn = hlb denote a global mesh ratio for partition Lin,
ai = hi+1/(hi + hi+l), Ci = 1 - ai (i = 1,2,... , n - 1), Fi = S:i I(x) dx for

,-1

given I E e(l). In this section, upper bounds for the norms of the projections
Pn2, Qn2 and Rn2(defined below) are given. As in the previous section, the
projections Pn2, Qn2 and R n2 are defined on C(l) with values in Sp(2, Lin).
Let Pn2J = S E Sp(2, LI n) be determined by the conditions

fi [(Pn
2f)(x) - I(x)] dx = °

Wi-l

(i = 1,2,... , n). (3.1)

Additionally for the histospline Pn2Jthe following boundary conditions are
imposed

(3.2)

Respectively for Qn2J the following boundary conditions are assumed

(3.3)

where Qn2J - S E Sp(2, Lin) satisfy conditions as in (3.1). Similarly we define
the projection R n

2 with the additional assumption that 1(0) = I (l). In this
case, the boundary conditions for Rn2Jare periodic, i.e.,

(j = 0, 1). (3.4)

Let x EO [Xi-l, Xi], t = (x - xi-l)lhi . The following formula for (Pn2f)(x)
valid (see, e.g., [11, 13, 15])

(Pn2f)(x) = I(Xi-l)(1 - t)(l - 3t) +I(Xi)t, (3t - 2t) + 6t(1 - t) Fdhi , (3.5)

where the numbers Yi = I(Xi) (i = 0, 1, ... , n) are the solution of the following
system oflinear equations (see, e.g., [11, 13, 15])

(i = 1,2,... , n - 1) (3.6)
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(by virtue of (3.2) the numbers Yo and Yn are given). Similarly for the histo
spline Qn2fwe have for x E [Xi-I, Xi]

and the appropriate system of linear equations with unknowns mi is the
following:

6
Cimi-I + 2n1i + ain1HI = h + h (Fi+1/hHI - Fi/hi)

i HI

(i = 1,2,... , n - 1) (3.8)

(by virtue of (3.3) mo = mn = 0). For the histospline Rn2J, formula (3.5)
is applicable.

Now we are able to prove the following

THEOREM 3.1. For the projections Pn2
, Qn2 and Rn2 the following estimates

hold
(3.9)

Proof We only sketch the proof because it is quite similar to the proof
of Theorem 3.1 in [7]. Using a diagonal dominance argument to the systems
(3.6) and (3.8) one has

max IYj I ~ 3 II file
O<j<:n

and max I n1j I ~ 61Ifl1e/b.
O<i<:n

Hence and from (3.5) and (3.7) we obtain the first and second inequality
in (3.9). Quite similarly one can prove that the last inequality holds. I

Note added in proof It can be proved that the following uniform upper bound for the
norms of Pn", Qn" and Rn" holds: II Pn"ll, II Qn"ll, Ii Rn"1i <; 3 for all n > 1 and arbitrary
partition .dn •

REFERENCES

1. D. M. ANSELONE AND P.-J. LAURENT, A general method for the construction of inter
polating or smoothing spline-functions, Numer. Math. 12 (1968), 66-82.

2. L. J. BONEVA, D. G. KENDALL, AND I. STEFANOV, Spline transformations: Three
diagnostic aids for the statistical data-analyst, J. Roy. Statist. Soc. Ser. B 33 (1971),
1-70.

3. C. DE BOOR, Appendix to: I. J. SCHOENBERG, Splines and histograms in "Spline Func
tions and Approximation Theory" (A. Meir and A. Sharma, Eds.), ISNM, Vol. 21,
pp. 329-358, Birkhiiuser, Basel, 1973.

4. C. DE BOOR, Quadratic spline interpolation and the sharpness of Lebesgue's inequality,
J. Approximation Theory 17 (1976), 348-358.



304 E. NEUMAN

5. E. W. CHENEY AND K. H~ PRICE, Minimal projections, in "Approximation Theory"
(A. Talbot, Ed.), pp. 261-289, Academic Press, London, 1970.

6. S. DEMKO, Interpolation by quadratic splines, J. Approximation Theory 23 (1978),
392-400.

7. W. J. KAMMERER, G. W. REDDIEN, AND R. S. VARGA, Quadratic interpolatory splines,
Numer. Math. 22 (1974), 241-259.

8. M. J. MARDSEN, Quadratic spline interpolation, Bull. Amer. Math. Soc. 80 (1974),
903-906.

9. G. MEINARDUS AND G. D. TAYLOR, Periodic quadratic spline interpolant of minimal
norm, J. Approximation Theory 23 (1978), 137-141.

10. E. NEUMAN, Determination of an interpolating quadratic spline function, Algorithm
46, Zastos. Mat. 15 (1976), 245-250.

11. E. NEUMAN, Determination of a quadratic spline function with given values of the
integrals in subintervals, Zastos. Mat. 16 (1980), 681-689.

12. F. RICHARDS, Best bounds for the uniform periodic spline approximation error,
J. Approximation Theory 7 (1973), 302-318.

13. J. W. SCHMIDT AND H. METTKE, Konvergenz von quadratischen Interpolations und
Fliichenabgleichsspli'1es, Computing 19 (1978), 351-363.

14. 1. J. SCHOENBERG, Splines and histograms, in "Spline Functions and Approximation
Theory" (A. Meir and A. Sharma, Eds.), ISNM, Vol. 21, pp. 277-327, Birkhiiuser,
Basel, 1973.

15. A. SHARMA AND J. TZIMBALARIO, Quadratic splines, J. Approximation Theory 19
(1977), 186-193.

16. R. S. VARGA, Error bounds for spline interpolation, in "Approximation with Special
Emphasis on Spline Functions" (I. J. Schoenberg, Ed.), pp. 367-388, Academic Press,
New York, 1969.


